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ABSTRACT A series of dietary ingredients and metabolites
are able to induce an adaptive stress response either by
generation of reactive oxygen species (ROS) and/or via
activation of the Nrf2/Keap1 stress response network. Most
of the molecules belong to activated Michael acceptors,
electrophiles capable to S-alkylate redox sensitive cysteine
thiols. This review summarizes recent advances in the (re)
search of these compounds and classifies them into distinct
groups. More than 60 molecules are described that induce the
Nrf2 network, most of them found in our daily diet. Although
known as typical antioxidants, a closer look reveals that these
molecules induce an initial mitochondrial or cytosolic ROS
formation and thereby trigger an adaptive stress response and
hormesis, respectively. This, however, leads to higher levels of
intracellular glutathione and increased expression levels of
antioxidant enzymes such as glutathione peroxidase, thiore-
doxin reductase, and superoxide dismutase. According to this
principle, the author suggests the term hormetics to describe
these indirect antioxidants.
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INTRODUCTION

Since the introduction of the “Free Radical Theory of
Ageing” by Denham Harman in 1956, reactive oxygen
species (ROS) were considered one of the main reasons
for the ageing process, including the development of
age-related diseases (1). The desire to cure cancer,
cardiovascular diseases, or diabetes mellitus by the use of
antioxidants was nothing more than wishful thinking.
Today, more than 50 years later, current meta-analyses
of intervention studies with antioxidants reveal a devas-
tating picture (2–4). Antioxidant supplementation has no
beneficial effect on age-related diseases; it furthermore
may cause side effects and even increase mortality (4).
How can the discrepancies between Harman’s hypothesis
and clinical outcomes be explained, since the amount of
ROS positively correlates with the incidence of neuro-
degeneration, cardiovascular events, diabetes mellitus, and
cancer? Whether the appearance of increased ROS levels
is a consequence of or a reason for the disease is the
question to be answered. Nowadays, ROS change their
attributes, and a more differentiated view is advisable to
answer this question.

The main sources of ROS are mitochondria which
evolve as a side product of the oxidative phosphorylation.
Approximately 2–3% of the oxygen molecules that are
needed for substrate oxidation are transferred into the
highly reactive superoxide radical O�:

2

� �
. It can be trans-

formed into a series of other oxidants, such as hydrogen
peroxide (H2O2) or peroxynitrite (ONOO-), that also react
with macromolecules within the cell to build up non-
functional proteins, lipids, or nucleic acids. As a conse-
quence, oxidized molecules accumulate during life and
contribute to a reduction of lifespan.
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Beside harmful properties, ROS evolved as important
signaling molecules in the redox homeostasis of cells. The
production of superoxide from NADPH oxidase plays an
important role in the immune system. The oxidative burst
has a crucial role in phagocytes to degrade internalized
particles and bacteria (5).

Other sources of ROS are xanthine oxidase, cyclo-
oxygenases, and lipoxygenase. ROS are necessary for
lifespan extension during the process of glucose restriction
in the nematode C. elegans (6) and are involved during
calorie restriction, the only way to extend lifespan in
mammals (7). During physical exercise, ROS are responsi-
ble for the improvement of insulin sensitivity, an inverse
predictor of diabetes mellitus (8). Last but not least, ROS
mediate the adaptive stress response of cells. This concept,
often termed as hormesis, was addressed recently by excellent
reviews in a comprehensive manner (9–14). This review will
give a brief introduction into small molecules within our
diet that induce an adaptive stress response and thereby act
as indirect antioxidants.

HORMESIS: AN ADAPTIVE STRESS RESPONSE

Oxidative stress is defined as an imbalance of anti-oxidative
and pro-oxidative reactions in favor of the pro-oxidant. The
term is commonly used in connection with age-associated
diseases and ageing in general. When stress levels exceed
defense capacity, they may cause oxidative damage in
macromolecules, whereas low levels of stress can stimulate
endogenous defense systems. Different terms are currently
used to describe this stimulation. Adaptive response, hormesis, and
eustress are discussed as important factors in the control of life
expectancy. The phenomenon of a stress response was first

described by Schulz in 1888 (15), and later the term hormesis
(from Greek hórmēsis “rapid motion, eagerness”) was used by
Southam and Ehrlich in 1943 to define the induction of
cellular stress response by a low-dosed sub-lethal stressor (16).
As a consequence, an overcompensation reaction of the cell
takes place that even resists lethal doses of the stressor (17).
Instead of a linear dose response, hormesis is characterized
by a biphasic J-shaped dose response curve. Hormetic stress
response was observed with a series of stressors such as
gamma radiation, heavy metals, oxidative stress, heat shock,
and, most interestingly, physical exercise (8,18–20). In
addition, dietary ingredients were discussed as stimulating
hormesis (21,22). In a recent review, Calabrese defines
hormesis as a biphasic dose response phenomenon that is
generally described by a low-dose stimulation and a high-
dose inhibition (10).

Several species benefit from a hormetic stress re-
sponse. Live extension via hormesis was described in yeast
(Saccharomyces cerevisiae) (23), fruit flies (Drosophila mela-
nogaster) (24), nematodes (Caenorhabditis elegans) (25), and
mice (26). Cellular stress signals may induce defense
mechanisms such as DNA-repair, heat shock chaperons,
and phase II enzymes.

A more specific view of hormesis refers to ROS
originated from mitochondria (mtROS), capable of
inducing an adaptive response. The term mitochondrial
hormesis or mitohormesis (MH) was introduced several years
ago by Tapia (20) and later proved by different groups
(6,8,27,28). Mitohormesis is used in reference to physical
exercise and calorie restriction but not phytochemicals or
drugs, yet.

The induction of an adaptive stress response requires
redox sensitive sensors within the cellular matrix that
differentially influence transcription. These proteins contain
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Fig. 1 Scheme for the regulation
of the Nrf2/Keap1-signalling net-
work via hormetics. Nrf2 is rapidly
degraded under conditions of a
normal redox balance. Since
Keap1 is a cysteine-rich protein,
chemical modifications induce
conformational changes and the
release of Nrf2. After its translo-
cation into the nucleus, Nrf2 binds
to antioxidant response elements
(AREs), thereby affecting the ex-
pression of detoxifying and anti-
oxidant enzymes (Table I).
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Table II Hormetics with an α-,β-unsaturated Carbonyl Unit

Compound Nutritional source Mode of action/pathway Reference

Flavokawain B Kava kava ROS formation, GSH depletion/NF-κB (73,74)

Isoliquiritigenin Licorice GSH depletion, ΔΨm drop, Keap1-alkylation/Nrf2 (75,44)

Caffeic acid phenylester Propolis, honey ROS formation, GSH depletion/Nrf2 and NF-κB (76–78)

Rosmarinic acid Rosemary */* –

Curcumin Turmeric mtROS formation/Nrf2 (79–81)

Piperine Black pepper */Nrf2 (82)

Shogaol Ginger ROS formation, GSH depletion, ΔΨm drop, Keap1-alkylation/Nrf2 (44,83)

Zerumbone Ginger ROS formation, GSH depletion/Nrf2 (84,85)

Xanthohumol Hop, beer O2
-* formation, GSH depletion, Keap1-alkylation/Nrf2 (42,44,86,87)

15 d-PGJ2 Arachidonic acid metabolite ROS formation, Keap1-alkylation/Nrf2 (88–90)

Astaxanthin Salmon, trout, shrimp ROS reduction, GSH depletion/Nrf2 (91,92)

Cinnamaldehyde Cinnamon oil ROS formation, GSH depletion/Nrf2 and NF-κB (93–95)

Safranal Perilla, saffron */Nrf2 (45)

Perillaldehyde Perilla */Nrf2 (45)

Citral Perilla, lemongrass */Nrf2 (45)

2,4-Octadienal Perilla */Nrf2 (45)

trans-2-Hexenal Perilla */Nrf2 (45)

trans-2,cis-6-Nonenal Perilla */Nrf2 (45)

4-Hydroxynonenal (4-HNE) Product of lipidperoxidation ROS formation, protein thiol-alkylation/Nrf2 (48,96)

Acrolein Product of lipidperoxidation ROS formation, GSH depletion/Nrf2 (97)

Malondialdehyde (MDA) Product of lipidperoxidation */* -

Crotonaldehyde Product of lipidperoxidation */Nrf2 (98)

*unknown

Table I Target Genes Regulated by Nrf2

Genes Function Reference

Antioxidant enzymes

Glutathione peroxidase GPX1-2 Elimination of hydrogen peroxide (67)

Superoxide dismutase SOD1-3 Elimination of superoxide radical (68)

Catalase CAT Elimination of hydrogen peroxide (68)

Thioredoxin reductase TXNRD Reduction of oxidants and oxidized thiols (69)

Thioredoxin TXN Cysteine thiol-disulfide exchange (69)

Peroxiredoxin PRDX1 and PRDX6 Reduction of oxidized cysteines (sulfenic acids) (70)

NAD(P)H dehydrogenase NQO1 Reduction of quinones to hydroquinones (69)

Aldo-keto reductase AKR1A and AKR1B8 NADPH-dependent oxidoreductase (71)

γ-Glutamylcysteine ligase regulatory subunit GCLR Glutathione biosynthesis and recycling (69)

γ-Glutamylcysteine catalytic subunit GCLC

Glutathione reductase GR

Detoxifying enzymes and related

Glutathione S-transferase GST1-4, GSTM1-6, MGST2-3 Phase II enzyme (glutathionylation) (68)

UDP-glucuronosyl transferase UGT1-2 Phase II enzyme (glucuronidation) (68)

Sulfotransferase SULT1 Phase II enzyme (sulfonation) (72)

Multidrug resistance related proteines MRP2-3 Detoxification (68)

Heme oxygenase-1 HMOX1 Heme catabolism, stress response (69)

Ferritin FTL, FTH Iron metabolism, stress response (71)
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cysteine thiols that are susceptible to thiol oxidation, thiol/
disulfide exchange, and S-alkylation. The latter reaction
occurs due to a dissociation of the thiol into a nucleophilic
sulfide anion, which may react with electrophiles to form a
covalent bond.

A large variety of electrophiles are described in the
literature (29) and are the subject of excellent review articles
(30,31). This review gives an update of these and additional
compounds and briefly summarizes the target, crucial for a
hormetic response.
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KEAP1/NRF2: SENSOR FOR HORMETIC RESPONSE

Post-transcriptional modifications mainly occur with the
help of enzymes with transferase activity. Electrophiles
and molecules with a high redox potential may non-
enzymatically interact with redox sensitive protein thiols.
A most prominent sensor is the Keap1-Nrf2-ARE
signaling network, which was recently reviewed in detail
(13,31–33) (Fig. 1). In brief, under conditions of a normal
redox balance, the cytosolic transcription factor NF-E2-
related factor 2 (Nrf2) is associated with its suppressor
protein Kelchlike ECH-associated protein 1 (Keap1) and
maintained at low expression levels via proteasomal
degradation (34). Since Keap1 is a cysteine-rich protein
(27 cysteines), its role as a redox sensor is obvious.
Conformational changes of Keap1 during chemical
modifications of cysteines led to dissociation and translo-
cation of Nrf2 into the nucleus. Several cysteine residues,

such as Cys273, Cys288 and Cys151, were identified by
mass spectroscopic methods as particularly sensitive to
redox modifications (35,36).

Nrf2 is a basic leucine zipper that stimulates stress-
inducible gene expression via binding to the antioxidant
response element (ARE). Nrf2 induces phase II enzymes
such as glutathione S-transferases (GST) and UDP-
glucuronosyl transferase (UGT), antioxidant enzymes like
glutathione peroxidases (GPx), superoxide dismutase
(SOD) and peroxiredoxin. In addition, Nrf2 activation
involves genes from cellular redox regulation including
glutathione synthetase, thioredoxin, thioredoxin reduc-
tase and NAD(P)H: quinone oxidoreductase 1 (NQO1).
Table I summarizes genes that are controlled by Nrf2.

Most interestingly, phosphorylation of Nrf2 by protein
kinases, such as extracellular signal-regulated protein kinase
(ERK1/2), protein kinase C (PKC), c-Jun N-terminal
kinase (JKN) and others, enables the dissociation of Nrf2

Table III Hormetic 1,4-naphthoquinones

Compound Nutritional source Mode of action/pathway Reference

Juglone Walnut ROS formation, GSH depletion, ΔΨm drop/SKN1a, EGFR signaling (50,99–101)

Vitamin K2 Meat, eggs, diary, natto O2
-* formation, ΔΨm drop/* (102)

Menadione –
b Keap1-alkylation, ROS formation, GSH depletion/Nrf2, EGFR signaling (35,50)

Plumbagin Leadwort ROS formation, GSH depletion/Nrf2, EGFR signaling (50,103)

Lawsone –
c ROS formation, GSH depletion/EGFR signaling (50)

Lapachol Lapacho tea ROS formation, GSH depletion/EGFR signaling (50)

a SKN1 is the Nrf2 homologue in C. elegans
b synthetic vitamin K analogue
c henna colorant

*unknown

Vitamin K2 (menaquinone)

Juglone Menadione Plumbagin

Lawsone Lapachol

Fig. 3 Chemical structures of 1-4-naphthoquinones.

6-(Methylsulfinyl)hexyl isothiocyanate (6-MITC)

Diallyltrisulfide

Sulphoraphane (SFN)

Phenylethylisothiocyanate (PEITC)

Allylisothiocyanate (AITC)

Lipoic acid

Allicin

Fig. 4 Chemical structures of sulfur-containing hormetics.
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from its repressor Keap1 (31). Since many kinases have
redox-active cysteine sides, this alternative activation route
must be considered for some molecules.

As stated above, the repressor Keap1 is prone to cysteine
modifications, and a variety of molecules with activated
double bonds, such as α-,β-unsaturated carbonyls or isothio-
cyanates, are able to S-alkylate this protein. An indirect
activation may occur when GSH is depleted via adduct
formation with xenobiotics. As a consequence, increased
ROS levels, in particular H2O2, lead to Keap1 protein thiol
modifications. Finally, molecules may in situ generate H2O2

via redox cycling as shown for 1,4-naphthoquinones. It is
worth noting that the activation of Nrf2 via Keap1 oxidation
by hydrogen peroxide is controversially discussed (37,38).

HORMETICS

This review aims to classify a (still growing) list of dietary
ingredients that initially act as oxidants and/or activators of
the Nrf2-pathway and thereby inducing an adaptive stress
response. Interestingly, many of these compounds were
described as antioxidants and potential drugs against
neurodegeneration or cancer. This discrepancy can be
explained by the pharmacokinetic profile of molecules

inducing hormesis. A most prominent example, resveratrol,
was re-investigated by Calabrese et al. (39). The well-known
antioxidant exhibits proliferative as well as pro-apoptotic
properties depending on the concentrations used. The
authors suggested several targets of action, such as the
insulin growth factor-II (IGF-II), cathepsin D, and vitamin
D receptor. Recently, it was shown that resveratrol may
increase intracellular ROS, deplete glutathione (GSH) and
stimulate the Nrf2-pathway (Table VI), thus adding an
important mechanism to the target list (40,41). Resveratrol
is one example of polyphenols capable of inducing
oxidative stress response and thereby act as indirect
antioxidants. The author suggests the term hormetics for
molecules that follow this principle.

Structure-activity relationships (SAR) of inducers of an
adaptive stress response were investigated in several studies.
Paul Talalay, a pioneer in this field, classified Michael
reaction acceptors (activated electrophiles) into different
chemical groups (29) covering oxidizable diphenols, olefins
or acetylenes conjugated to electron-withdrawing groups,
isothiocyanates, thiocarbamates, trivalent arsenicals, dithio-
lethiones, hydroperoxides, vicinal dimercaptans, and
others. A series of those structural determinants is found
in phytochemicals and dietary ingredients and will be
covered by this review.

Table IV Sulfur-Containing Hormetics

Compound Nutritional source Mode of action/pathway Reference

Allicin Fresh garlic Induction of apoptosis/Nrf2 (104)

Diallyltrisulfide Aged garlic ROS formation/Nrf2 (51,105,106)

Lipoic acid Meat, spinach, broccoli ROS formation/Nrf2 (107–109)

Sulphoraphane Broccoli, cauliflower, brassicas, kale ROS formation, GSH-alkylationa/Nrf2 (109–112)

6-(Methylsulfinyl)hexylisothiocyanate Wasabi GSH depletion, NAC-alkylationa/Nrf2 (113–115)

Phenylethylisothiocyanate Watercress, garden cress ROS formation/Nrf2 (116)

Allylisothiocyanate Cabbage, mustard, horseradish ROS formation/Nrf2 (116)

a reversible, * unknown

Table V Potential Hormetic Linear or Branched Chain Fatty Acids and Derivatives

Compound Nutritional source Mode of action/pathway Reference

α-13′-Carboxychromanol Metabolite of vitamin E mtROS formation, ΔΨm drop/* (55)

Apo-10′-lycopenoic acid Metabolite of lycopene Induction of apoptosis/Nrf2 (117,118)

Geranylgeranoic acid Turmeric, schisandra, licorice Induction of apoptosis, ΔΨm drop/* (119)

Crocetin Saffron */Protection against oxidative stress (Nrf2?) (56)

Phytanic acid Metabolite of chlorophyll, dry lichen, walnuts mtROS formation, ΔΨm drop/Inhibition of PDHa (54,120,121)

Pristanic acid Metabolite of chlorophyll ROS formation ΔΨm drop/* (54)

Palmitic acid Free fatty acid ROS formation, ΔΨm drop/* (122)

Linoleic acid Free fatty acid ROS formation, ΔΨm drop/* (123)

*unknown
a PDH: mitochondrial pyruvate dehydrogenase
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Michael Acceptors with α-,β-Unsaturated Carbonyl
Function

This class of Michael acceptors includes α-,β-unsaturated
ketones, aldehydes, and carboxylic acid and esters
(Table II, Fig. 2a,b,c). The molecules listed in Table II
were mainly tested in cell culture systems. Most of the
molecules induce an initial ROS formation accompanied
with GSH depletion, and some compounds are described to
lower the mitochondrial membrane potential ΔΨm. The
question arises whether the ROS formation is pivotal for
Nrf2 activation or rather a secondary signal from apoptotic
cells. Surviving cells, however, exhibit higher proliferation

rates and increased GHS levels besides higher expression
levels of antioxidant enzymes. Compounds with an enone-
structure (flavokawain B, Isoliquiritigenin, zerumbone,
xanthohumol, curcumin, shogaol, piperine, 15d-PGJ2,
astaxanthin) seem to generate ROS followed by Nrf2
activation. Mass spectroscopic methods revealed a direct
S-alkylation of Keap1 with xanthohumol, shoagol, isoli-
quiritigenin and 15-deoxy-Δ12,14-prostaglandin J2 (15d-
PGJ2), respectively (42–44).

Caffeic acid phenylethyl ester found in honeybee
hives induces a strong hormetic response, but structural-
related rosmarinic acid was not investigated so far. Nrf2
and NF-κB activation were described for cinnamalde-
hyde, the prototype of an α-,β-unsaturated aldehyde.
Several aldehydes such as perillaldehyde from perilla
frutescence were recently identified to induce the Nrf2/
Keap1 system (45).

Interestingly, lipid oxidation products strongly induce
Nrf2 activity and fit well within the list of phytochemicals
assigned as neuroprotectors or anticarcinogens. For exam-
ple, 4-hydroxy-2-nonenal (4-HNE), the final aldehyde
derived from oxidation of ω-6 polyunsaturated fatty acids,
such as linoleic acid, linolenic acid, and arachidonic acid,
induces an adaptive response. It furthermore reacts with
redox-sensitive cysteines of thioredoxin and thioredoxin
reductase (46), glyceraldehyde-3-phosphate dehydrogenase
(47), glutathione S-transferase (48), and actins (49). Similar
results were obtained with crotonaldehyde and acrolein,
whereas malondialdehyde was not investigated yet.

1,4-Naphthoquinones

1,4-Naphthoquinones are potent cytotoxic agents capa-
ble of producing H2O2 via redox cycling. In addition,
they are strong Michael acceptors and thus prone to
protein thiol S-alkylations. Several naturally occurring
1,4-naphthoquinone, such as plumbagin from leadwort,
juglone from various types of walnut, lawsone from henna
colorants, lapachol from lapacho tea, and vitamin K2,

induce ROS formation and GSH depletion (Table III,
Fig. 3). Vitamin K2-induced apoptosis is mediated by
mitochondrial superoxide radical generation, and juglone,
plumbagin, and the synthetic vitamin K analogue mena-
dione activate the Nrf2 network. In addition, naphthoqui-
nones stimulate ErB2 and EGFR signaling pathways (50)
(Fig. 4).

apo-10'-lycopenoic acid

Geranylgeranoic acid

Crocetin

Linoleic acid

Palmitic acid

Phytanic acid

Pristanic acid

-13'-carboxychromanol

Fig. 5 Chemical structures of linear or branched chain fatty acids and
derivatives with hormetic effects.

Compound Nutritional source Mode of action/pathway Reference

Falcarinol Carrots, celery Induction of hemoxygenase 1(HO1)/(Nrf2 ?) (124)

Falcarindiol Carrots, celery Keap1-alkylation/Nrf2 (58,124)

Panaxydol Red ginseng, carrots ROS formation/JNK and p38 MAPK (125)

Table VI Hormetic Acetylenes
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Isothiocyanates and Disulfides

Isothiocyanates and disulfides are also Michael acceptors that
react with protein thiols to form thiocarbamates or mixed
disulfides, respectively. Compounds in Table IV induce ROS
and activate the Nrf2 pathway. Beneficial health effects of
sulfur-containing products from garlic have been described
for many years. The chemical reactions of allicin and
diallyltrisulfide lead to protein thiolation, decrease GSH,
and increase ROS levels. The complex redox chemistry was
reviewed recently by Filomeni et al. (51). Of the isothiocya-
nantes, sulforaphane from broccoli is probably the most
intensively studied, also in respect to Nrf2 activation by
phytochemicals. 6-(Methylsulfinyl)hexylisothiocyanate, allyli-
sothiocyanate and phenylethylisothiocyanate exhibit similar
chemical and biochemical properties. A reversible reaction of
isothiocyanates with GSH and presumably with Keap1
forms thiocarbamates (52,53).

Linear and Branched Chain Fatty Acids
and Derivatives

This class of compound comprises linear and branched
chain fatty acids, mostly found as catabolic metabolites

(Table V, Fig. 5). The lycopene metabolite apo-10′-
lycopenic acid and geranylgeranoic acid from schisandra
belong to the class of Michael acceptors, since they have a
double bond conjugated to a carboxylic acid. Nrf2
activation was only described for apo-10′-lycopenic acid
yet. It is questionable if these compounds directly interact
with Keap1. The chlorophyll metabolite phytanic acid
inhibits mitochondrial pyruvate dehydrogenase, leading to
an increase of mtROS and the vitamin E metabolite α-13′-
carboxychromanol induces mitochondrial ROS formation
(54,55). Crocetin, the yellow color pigment of saffron, was
shown to protect primary rat hepatocytes from oxidative
stress (56), presumably via Nrf2 activation. Palmitic acid is
discussed to uncouple mitochondria which lead to increased
mtROS levels (57). Taken together, not much is known
about this class of compounds, but it seems likely that they
interact with the mitochondrial metabolism and thereby
generate mtROS that likely induce an adaptive stress
response. Further studies are needed to prove Nrf2
activation of this class of compounds.

Acetylenes

Although a rather small group of compounds, these
naturally occurring acetylenes behave as typical Michael
acceptors (Table VI, Fig. 6). Falcarinol, falcarindiol, and
panaxydol present in carrots and celery induce ROS
formation and, most importantly, induce the Nrf2 network.
Keap1-alkylation of cysteine thiol Cys151 by falcarindiol
was recently demonstrated by Ohnuma et al. (58).

Polyphenols

Classical polyphenols are antioxidants by definition; they
are able to scavenge free radicals. This property was
demonstrated in a series of in vitro studies but was scarcely

Panaxydol

Falcarinol

Falcarindiol

Fig. 6 Chemical structures of hormetic acetylenes.

Table VII Classical Polyphenols as Hormetic Effectors

Compound Nutritional source Mode of action/pathway Reference

Liquiritigenin Licorice ROS formation, GSH depletion, ΔΨm drop/* (126)

Naringenin-glucoside Grapefruits, oranges, tomatoes */ERK and Nrf2 (127)

Kaempferol Green tea, broccoli, apples ROS formation, ΔΨm drop/Nrf2 (128–130)

Jaceiosidin Artemisia species ROS formation/Nrf2 and NF-κB (131,132)

Resveratrol Grapes, blueberries, peanuts, red wine ROS formation, GSH depletion/Nrf2 (40,41,133,134)

Quercetin Vegetables, fruits, red wine ROS formation, ΔΨm drop/Nrf2 (135,136)

Epigallocatechin-3-gallate Green tea H2O2 formation, GSH depletion, ΔΨm drop/Nrf2 (137–140)

Hesperidin Citrus fruits */ERK and Nrf2 (141,142)

Carnosic acid Rosemary Keap1-alkylation/Nrf2 (60,143)

Cyanidine-3-rutinoside Vegetables, fruits ROS formation/Nrf2 (144,145)

Protocatechuic acid Fruits, vegetables, teas, wine */Nrf2 (146)

*unknown
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seen in living systems. An overall antioxidative benefit,
however, was clearly demonstrated in cell culture and animal
studies. A recent review by Siow and Mann propagates
polyphenols as hormetic effectors (21,59). The polyphenols
in Table VII are structurally related to polyphenols from
Table II but are not Michael acceptors at first glance. But
most interestingly, they induce ROS formation, GSH
depletion, as well as Nrf2 activation. Less is known about
how polyphenols increase intracellular ROS levels. Several

studies suggest the conversion of diphenols to quinones. The
mechanism involves a two electron auto-oxidation from a
catechol-type to an electrophilic quinone-type molecule. The
reaction easily occurs with catechols (1,2-diphenols) and
hydroquinones (1,4-diphenols) but not with resorcinols (1,3-
diphenols) (29). For example, carnosic acid is oxidized to a
1,2-quinone-type electrophile, which readily alkylates Keap1
resulting in the release of Nrf2 (Fig. 6b) (60). Nrf2 translocates
into the nucleus and activates transcription of phase 2
enzymes via the ARE transcriptional element in the promotor
region of the corresponding genes. By this mechanism,
polyphenols may induce a hormetic response (Figs. 7 and 8).

Secondary metabolism may transfer flavones and flava-
nones into chalcones that belong to the group of Michael
acceptors. This pathway would also explain some of the
pro-oxidant properties. In addition, disruption of mito-
chondrial metabolism was described for the green tea
polyphenol EGCG that accumulates at 90–95% within
mitochondrial fraction rat liver cells (61). As a result,
hydrogen peroxide formation was observed.

Miscellaneous

Table VIII covers the molecules which could not be
assigned to the classifications made before. However, all
molecules behave like hormetics and are worth investigat-
ing in further studies.

CONCLUSION

The aim of this review is the description of a series of
electrophilic natural compounds from edible plants. Most
of them are known for their antioxidant properties in vitro

Naringenin

Hesperidin

Epigallocatechin-3-gallate

Kaempferol

Jaceosidin

Quercitin

Liquiritigenin Protocatechuic acid

2H+ +2e-

Oxidation

Resveratrol

Carnosic acid (catechol-type) Carnosic acid (enol-type)

Cyanidine-3-rutinoside

Fig. 7 Chemical structures of polyphenols with hormetic effects.

Kahweol

Capsaicin

Linalool

6-Gingerol

Fig. 8 Chemical structures of hormetics with unclear structure-function-
relationship.
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and in vivo. The review does not reflect the numerous ways
of modulating signaling networks, the endocrine system, or
inflammatory events.

Only recently, classical antioxidants were investigated for
a biphasic redox behavior. A hormetic stress response is
often observed, depending on the administered concentra-
tion and duration of treatment. The concept of hormesis
will probably change our view of many antioxidants. The
Nrf2/Keap1 network plays a crucial role in the mediation
of an adaptive response. The number of publications
addressing Nrf2 is growing dramatically. A simple PubMed
database search found 216 hits during the years 2000–2005
and increased to 1,059 hits from 2005 to 2010. Since 2010,
more than 800 publications refer to Nrf2.

Studies with antioxidant supplements failed to improve
overall age-related health (see Introduction); however,
nearly all meta-analyses assigned health benefits to the
consumption of fruit and vegetables (62–65). Two possible
reasons might explain these results. First, supplementation
with high doses of antioxidants may suppress an adaptive
stress signaling as shown with volunteers taking a combina-
tion of vitamin C (1,000 mg/day) and vitamin E (400 IU/
day) during a 4-week intervention of physical exercise.
Physical exercise is known to improve markers for age-
related disease such as diabetes mellitus and also triggers
potentially harmful ROS formation. Compared to controls,
the intervention group did not improve insulin sensitivity or
ROS defense capacity as shown by muscular superoxide
dismutase and glutathione peroxidase expression, suggest-
ing an adaptive stress response that was blocked by
antioxidants (8). Second, prospective cohort studies found
that dietary consumption of at least 400 g/day vegetables
and fruits was sufficient to achieve the recommended daily
allowance for vitamins and minerals. Moreover, the
quantity of phytochemicals consumed may induce a
hormetic response that could be responsible for the
beneficial health effect of fruits and vegetables.

Future research will identify more hormetics in our diet,
and “electrophile” profiling of food and plant extracts may
accelerate this research field. One elegant approach was
described recently when different spices and herbs, includ-
ing coffee, were investigated for their ability to activate a
luciferase-based reporter gene construct for ARE (66).
Finally, simple biomarkers will be needed to estimate the
potency of a hormetic stress response in human trials.
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